Gambarlahpertidaksamaan berikut pada garis bilangan. a. x <-2 b. t >_4 c. b <_1,5 d. -1/2 < s 1 Lihat jawaban Iklan Iklan arsetpopeye arsetpopeye Gambar pertidaksamaan pada garis bilangan adalah suatu cara untuk menentukan daerah himpunan penyelesaian pertidaksamaan tersebut. Jika tandanya > atau ≥ maka tanda daerah himpunannya diarsir ke kanan.
Nah dalam artikel ini kita akan belajar tentang bagaimana caranya menentukan penyelesaian pertidaksamaan kuadrat dengan menggunakan diagram garis sapta. Sebagai contoh, kita akan memilih himpunan penyelesaian pertidaksamaan kuadrat x2- 4x + 3 0 menggunakan memakai metode garis sapta.
Berdasarkantanda-tanda interval dalam gambar diagram garis bilangan pada langkah 3, maka interval yang memenuhi pertidaksamaan x 2 - 4x + 3 < 0 adalah 1 < x < 3. Dengan demikian, himpunan penyelesaian dari pertidaksamaan kuadrat x 2 - 4x + 3 < 0 dapat kita tuliskan sebagai berikut.
pertidaksamaanmenjadi persamaan 2 tentukan akar2 dari persamaan kuadrat tersebut 3 tentukan letak akar2 persamaan kuadrat pada garis bilangan 4 tentukan daerah dan daerah, himpuana penyelesaian hp adalah himpunan dari penyelesaian penyelesaian suatu persamaan ada dua cara
. Jakarta – Sistem pertidaksamaan linear dua variabel adalah pertidaksamaan yang terdiri atas dua variabel. Nah, bentuk umum dari pertidaksamaan linear dua variabel ini ditulis dengan lambang x dan y. Artikel ini akan memberikan beberapa contoh soal pertidaksamaan linear dua variabel. Berikut ini adalah bentuk umum penulisan pertidaksamaan linear dua variabel ax + by ≤ c;ax + by ≥ c;ax + by c; Keterangana, b, c adalah bilangan asli. a dan b adalah adalah dan y adalah variabel. Himpunan Penyelesaian Pertidaksamaan Linear Dua Variabel Dalam e-Modul Matematika Program Linear Dua Variabel yang disusun oleh Yoga Noviyanto, himpunan penyelesaian pertidaksamaan linear dua variabel adalah daerah yang dibatasi oleh garis pada sistem koordinat kartesius. Daerah tersebut dinamakan Daerah Penyelesaian DP PtLDV dan dapat dicari dengan cara sebagai berikut 1. Metode Uji Titik Untuk memahami metode ini, perhatikan contoh di bawah ini. Diketahui pertidaksamaan linear dua variabel adalah ax + by ≤ yang harus kamu lakukan a. Gambarlah grafik ax + by = c b. Jika tanda ketidaksamaan berupa ≤ atau ≥, garis pembatas digambar penuh. Jika tanda ketidaksamaan berupa , garis pembatas digambar putus-putus c. Uji titik. Ambil sembarang titik, misalkan x1, y1 dengan x2, y2 di luar garis ax + by = c, d. Masukkan nilai titik x1, y1 atau x2, y2 tersebut ke dalam pertidaksamaan ax + by ≤ c e. Ada dua kemungkinan, yaitu jika hasil ketidaksamaan ax1 + by1 ≤ c bernilai benar, daerah penyelesaiannya adalah daerah yang memuat titik x1,y1 dengan batas garis ax + by = c. Namun, jika ketidaksamaan ax1 + by1 ≤ c bernilai salah, daerah penyelesaiannya adalah daerah yang tidak memuat titik x1, y1 dengan batas garis ax + by = c. 2. Memperhatikan Tanda Ketidaksamaan Daerah penyelesaian pertidaksamaan linear dua variabel dapat ditentukan di kanan atau di kiri garis pembatas dengan cara memperhatikan tanda ketidaksamaan. Berikut ini langkah-langkahnya. a. Pastikan koefisien x dan pertidaksamaan linear dua variabel tersebut positif. Jika tidak positif, kalikan pertidaksamaan dengan -1. Ingat, jika pertidaksamaan dikali -1, tanda ketidaksamaan berubah. b. Jika koefisien x dari PtLDV sudah positif. Perhatikan tanda ketidaksamaannya. – Jika tanda ketidaksamaan , daerah penyelesaian ada di kanan garis pembatas. – Jika tanda ketidaksamaan ≥, daerah penyelesaian ada di kanan dan pada garis pembatas. Contoh 2x + 5y ≥ 7 Jawaban Daerah penyelesaian ada di kanan dan pada garis 2x + 5y = 7. -3x + 8y ≥ 15 Jawaban = -3x + 8y ≥ 15 dikali -1 agak koefisien x menjadi positif = 3x – 8y ≤ -15 = Daerah penyelesaian di kiri dan pada garis -3x + 8y = 15 3. Sistem Pertidaksamaan Linear Dua Variabel Sistem pertidaksamaan linear dua variabel atau SPtLDV adalah gabungan dari dua atau lebih pertidaksamaan linear dua variabel. Langkah sederhana untuk menyelesaikan SPtLDV, yaitu a. Cari titik x saat y = 0, begitu juga sebaliknyab. Gambarlah grafik sesuai dengan titik x dan yc. Arsir daerah yang sesuai dengan tanda pertidaksamaan Contoh 4x + 8y ≥ 16 Jawaban 1. Mencari nilai x= Jika y = 0, maka menjadi 4x = 16= x = 16/4= x = 4 2. Mencari nilai y= Jika x = 0, maka menjadi 8y = 16= y = 16/8= y = 2 3. Gambarlah grafik dengan titik x = 4 dan y = 2 atau 4, 2. 4. Arsir daerah sesuai dengan tanda pertidaksamaan Daerah penyelesaian pertidaksamaan Foto IST Contoh Soal Pertidaksamaan Linear Dua Variabel Untuk mengasah kemampuanmu dalam memahami pertidaksamaan linear dua variabel, coba kerjakan soal di bawah ini, yuk! 1. Tentukan daerah penyelesaian dari pertidaksamaan linear dua variabel ini 5x + 6y > 30 Jawaban 1. Mencari nilai x= Jika y = 0, 5x = 30= x = 30/5= x = 6 2. Mencari nilai y= Jika x = 0, 6y = 30= y = 30/6= y = 5 3. Gambarlah grafik dengan titik x = 6 dan y = 5 atau 6, 5 4. Arsir daerah sesuai dengan tanda pertidaksamaan Daerah penyelesaian pertidaksamaan Foto Ist 2. Diketahui pertidaksamaan linear dua variabel adalah -4x + 2y ≤ 8. Tentukan daerah penyelesaiannya. Jawaban1. Kalikan dengan -1, menjadi 4x + 2y ≥ 82. Mencari nilai x= Jika y = 0, 4x = 8= x = 8/4= x = 23. Mencari nilai y= Jika x = 0, 2y = 8= y = 8/2= y = 44. Gambarlah grafik dengan titik x = 2 dan y = 4 atau 2, 45. Arsir daerah sesuai dengan tanda pertidaksamaan 3. Diketahui pertidaksamaan linear dua variabel adalah 8x + 4y ≥ 40. Tentukan daerah penyelesaiannya. Jawaban1. Mencari nilai x= Jika y = 0, 8x = 40= x = 40/8= x = 52. Mencari nilai y= Jika x = 0, 4y = 40= y = 40/4= y = 103. Gambarlah grafik dengan titik x = 5 dan y = 10 atau 5, 104. Arsir daerah sesuai dengan tanda pertidaksamaan 4. Sistem pertidaksamaan yang memenuhi daerah yang diarsir pada gambar berikut adalah … Daerah penyelesaian pertidaksamaan Foto IST 0,6 dan 7,0 6x + 7y = + 7y = 42Lihat daerah yang diarsir berada di sebelah kiri garis 6x + 7y = 42, berarti daerah yang diarsir pertidaksamaannya 6x + 7y ≤ 42 Kemudian, 0,4 dan 9,04x + 9 y = 36Daerah yang diarsir berada di sebelah kanan, berarti daerah yang diarsir pertidaksamaannya 4x + 7y ≥ 36 Jadi sistem pertidaksamaannya 6x + 7y ≤ 42, 4x + 7y ≥ 36, x ≥ 0, y ≥ 0 5. Contoh soal pertidaksamaan linear dua variabel berikutnya. Buatlah daerah penyelesaian dari pertidaksamaan berikut x + y ≤ 6, 2x + 3y ≤ 12, x ≥ 1, y ≥ 0 Langkah pertama tentukan titikx + y ≤ 6x + y = 60,6 dan 6,0 2x + 3y ≤ 122x + 3 y = 12Nilai x jika y = 0, maka menjadi 2x = 12, x = 6Nilai y jika x = 0, maka menjadi 3y = 12, y = 40,4 dan 6,0 Daerah penyelesaian pertidaksamaan Foto IST Simak Video “Momen Jokowi Bertemu Anak-anak Pandai Matematika di Sumut“ [GambasVideo 20detik] pal/pal
Blog Koma - Pada artikel ini kita akan membahas materi Cara Menentukan Tanda + atau - pada Garis Bilangan yang berkaitan dengan penyelesaian pertidaksamaan. Garis bilangan pertidaksamaan biasanya kita perlukan ketika akar-akar pembuaat nol pada pertidaksamaannya lebih dari satu. Nah, terkadang tidak semua kita bisa dengan mudah dalam Cara Menentukan Tanda + atau - pada Garis Bilangan. Sebenarnya Cara Menentukan Tanda + atau - pada Garis Bilangan ini sudah kita bahas dalam artikel "Pertidaksamaan secara Umum", namun hanya secara sekilas saja tidak terlalu mendalam. Pada materi "Pertidaksamaan secara Umum", telah dibahas tentang 'Langkah-langkah umum menyelesaiakan pertidaksamaan' dimana salah satu langkahnya adalah kita membutuhkan garis bilangan dan tandanya yaitu $ + $ atau $ - $ . Catatan pada pembahasan artikel ini, kita hanya khusus membahas bentuk garis bilangan dan tanda pada setiap intervalnya yaitu $ + $ atau $ - $ saja. Berikut langkah-langkah umum penyelesaian pertidaksamaan untuk berbagai jenis pertidaksamaan. Langkah-langkah umum menyelesaiakan pertidaksamaan Langkah - langkah berikut dapat digunakan untuk menyelesaikan semua jenis pertidaksamaan $\spadesuit $ Solusi Umum HP1 1. Nolkan ruas kanan 2. Tentukan akar-akar pembuat nolnya dari pertidaksamaan dengan cara mengubah ketaksamaan menjadi sama dengan = lalu difaktorkan. 3. Tuliskan akar-akar pada garis bilangan dan tentukan tanda setiap intervalnya $+$ atau $ - $ setiap daerah 4. Arsir daerah yang sesuai $ > $ untuk $ + $ , dan $ 0 $ c. $ x+3x-1^3x+1^5 \leq 0 $ d. $ x+4^3x-1^2 \geq 0 $ Penyelesaian a. $ xx-1x+3 \geq 0 $ *. Menentukan Akar-akar pertidaksamaan Faktor dari $ xx-1x+3 = 0 $ yaitu $ x, x - 1, x + 3 $ -. faktor I $ x = 0 \, $ , ada satu akar sebanyak ganjil -. faktor II $ x - 1 = 0 \rightarrow x = 1 \, $ , ada satu akar sebanyak ganjil -. faktor III $ x + 3 = 0 \rightarrow x = -3 \, $ , ada satu akar sebanyak ganjil *. Karena semua akar-akarnya masing-masing sebanyak ganjil, maka pasti tandanya akan selang-seling untuk interval yang bergantian. Berikut kita cek salah satu interval yang paling kiri dengan memilih $ x = -4 $. $ x = -4 \rightarrow xx-1x+3 = -4.-4-1-4+3 = - \times - \times - = - $ negatif Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ \geq $ ada sama dengannya, maka akar-akarnya ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan penuh. Misalkan kita cek salah satu akarnya yaitu $ x = 1 $ $ x = 1 \rightarrow xx-1x+3 \geq 0 \rightarrow 1.1-11+3 \geq 0 \rightarrow 0 \geq 0 \, $ BENAR. b. $ x+2^2x-5x+1^3 > 0 $ *. Menentukan Akar-akar pertidaksamaan Faktor dari $ x+2^2x-5x+1^3 = 0 $ yaitu $ x+2^2, x-5, x+1^3 $ -. faktor I $ x+2^2 = 0 \rightarrow x+2x+2 = 0 \rightarrow x = -2 , x = -2 $, ada dua akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. -. faktor II $ x-5 = 0 \rightarrow x = 5 \, $ , ada satu akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor III $ x+1^3 = 0 \rightarrow x + 1x+1x+1 = 0 \rightarrow x = -1, x = -1, x = -1$ , ada tiga akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. *. Berikut kita cek salah satu interval yang memuat angka $ x = 0 $ $ x = 0 \rightarrow x+2^2x-5x+1^3 = 0+2^20-50+1^3 = + \times - \times + = - $ negatif Artinya interval yang memuat angka $ 0 $ bertanda $ - $ . Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ > $ tidak ada sama dengannya, maka akar-akarnya tidak ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan kosong. Misalkan kita cek salah satu akarnya yaitu $ x = 1 $ $ x = -1 \rightarrow x+2^2x-5x+1^3 > 0 \rightarrow -1+2^2-1-5-1+1^3 > 0 \rightarrow 0 > 0 \, $ SALAH. c. $ x+3x-1^3x+1^5 \leq 0 $ *. Menentukan Akar-akar pertidaksamaan Faktor dari $ x+3x-1^3x+1^5 = 0 $ yaitu $ x+3, x-1^3, x+1^5 $ -. faktor I $ x + 3 = 0 \rightarrow x = -3 $, ada satu akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor II $ x-1^3 = 0 \rightarrow x = 1, x = 1, x = 1 \, $ , ada tiga akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor III $ x+1^5 = 0 \rightarrow x = -1, x = -1, x = -1, x = -1, x = -1 $ , ada lima akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. *. Berikut kita cek salah satu interval yang memuat angka $ x = 0 $ $ x = 0 \rightarrow x+3x-1^3x+1^5 = 0+30-1^30+1^5 = + \times - \times + = - $ negatif Artinya interval yang memuat angka $ 0 $ bertanda $ - $ . Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ \leq $ ada sama dengannya, maka akar-akarnya ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan penuh. d. $ x+4^3x-1^2 \geq 0 $ *. Menentukan Akar-akar pertidaksamaan Faktor dari $ x+4^3x-1^2 = 0 $ yaitu $ x+4^3,x-1^2 $ -. faktor I $ x+4^3 = 0 \rightarrow x = -4, x = -4 , x = -4 $, ada tiga akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor II $ x-1^2 = 0 \rightarrow x = 1, x = 1 \, $ , ada dua akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. *. Berikut kita cek salah satu interval yang memuat angka $ x = 0 $ $ x = 0 \rightarrow x+4^3x-1^2 = 0+4^30-1^2 = + \times + = + $ positif Artinya interval yang memuat angka $ 0 $ bertanda $ + $ . Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ \geq $ ada sama dengannya, maka akar-akarnya ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan penuh. Solusi dari bentuk garis bilangannya adalah $ x \geq 1 $. 2. Tentukan bentuk garis bilangan dan tandanya dari pertidaksamaan berikut ini a. $ x^2x-3^2x+2^4 > 0 $ b. $ x^2x-3^2x+2^4 0 $ *. Menentukan Akar-akar pertidaksamaan Faktor dari $ x^2x-3^2x+2^4 = 0 $ yaitu $ x^2, x-3^2, x+2^4 $ -. faktor I $ x^2 = 0 \rightarrow = 0 \rightarrow x = 0 , x = 0 $, ada dua akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. -. faktor II $ x-3^2 = 0 \rightarrow x = 3, x = 3 \, $ , ada dua akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. -. faktor III $ x+2^4 = 0 \rightarrow x = -2, x = -2, x = -2 , x = -2 $ , ada empat akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. *. Berikut kita cek salah satu interval yang memuat angka $ x = 1 $ $ x = 1 \rightarrow x^2x-3^2x+2^4 = 1^21-3^21+2^4 = + \times + \times + = + $ positif Artinya interval yang memuat angka $ 1 $ bertanda $ + $ . Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ > $ tidak ada sama dengannya, maka akar-akarnya tidak ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan kosong. Solusinya adalah $ x 3 $. Contoh soal nomor 2 ini sebenarnya mirip, hanya saja tanda ketaksamaannya saja yang berbeda. Sehingga garis bilangannya mirip hanya saja yang berbeda adalah daerah arsiran dan bulatannya. b. $ x^2x-3^2x+2^4 0 $ Penyelesaian a. $ \frac{x-1x+2^2}{x+1^3x-3} \leq 0 $ *. Menentukan Akar-akar pertidaksamaan Pembilangnya Faktor dari $ x-1x+2^2 = 0 $ yaitu $ x-1, x+2^2 $ -. faktor I $ x-1 = 0 \rightarrow x = 1 $, ada satu akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor II $ x+2^2 = 0 \rightarrow x = -2, x = -2 \, $ , ada dua akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. Penyebutnya Faktor dari $ x+1^3x-3 = 0 $ yaitu $ x+1^3, x-3 $ -. faktor III $ x+1^3 = 0 \rightarrow x = -1 , x = -1, x = -1 $, ada tiga akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor IV $ x-3 = 0 \rightarrow x = 3 \, $ , ada satu akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. *. Berikut kita cek salah satu interval yang memuat angka $ x = 1 $ $ x = 0 \rightarrow \frac{x-1x+2^2}{x+1^3x-3} = \frac{0-10+2^2}{0+1^30-3} = + $ positif Artinya interval yang memuat angka $ 0 $ bertanda $ + $ . Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ \leq $ ada sama dengannya, maka akar-akarnya ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan penuh kecuali akar-akar penyebutnya karena penyebut pecahan tidak boleh bernilai nol. b. $ \frac{x+5x+3^2}{x+1^2x+3^3} > 0 $ *. Menentukan Akar-akar pertidaksamaan Pembilangnya Faktor dari $ x+5x+3^2 = 0 $ yaitu $ x+5, x+3^2 $ -. faktor I $ x+5 = 0 \rightarrow x = -5 $, ada satu akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. -. faktor II $ x+3^2 = 0 \rightarrow x = -3, x = -3 $, ada dua akar Penyebutnya Faktor dari $ x+1^2x+3^3 = 0 $ yaitu $ x+1^2, x+3^3 $ -. faktor III $ x+1^2 = 0 \rightarrow x = -1 , x = -1 $, ada dua akar sebanyak genap sehingga interval kiri dan kanannya tidak selang-seling. -. faktor IV $ x+3^3 = 0 \rightarrow x = -3, x = -3, x = -3 $ ,ada tiga akar. Akar pembilang dan penyebut ada yang sama yaitu $ x = -3 $ yang totalnya menjadi lima akar sebanyak ganjil sehingga interval kiri dan kanannya selang-seling. *. Berikut kita cek salah satu interval yang memuat angka $ x = 1 $ $ x = 0 \rightarrow \frac{x+5x+3^2}{x+1^2x+3^3} = \frac{0+50+3^2}{0+1^20+3^3} = + $ positif Artinya interval yang memuat angka $ 0 $ bertanda $ + $ . Berikut gambar garis bilangannya Karena tanda ketaksamaannya $ > $ tidak ada sama dengannya, maka akar-akarnya tidak ikut jadi penyelesaian sehingga pada garis bilangannya diberi bulatan kosong. $ \clubsuit \, $ Cara Menentukan Tanda + atau - pada Garis Bilangan Pertidaksamaan Fungsi Trigonometri. Untuk pertidaksamaan yang melibatkan fungsi trigonometri, saran terbaik kami adalah sebaiknya kita cek satu persatu interval yang terbentuk karena pada pertidaksamaan trigonometri bentuk grafiknya yang periodik sehingga sulit bagi kita membuat kesimpulan tanda + atau $ - $ untuk interval-intervalnya. Jadi, teman-teman harus bersabar ya ketika menjumpai soal pertidaksamaan trigonometri. Dan demi hasil akhir yang benar, sebaiknya kita cek satu persatu intervalnya dengan substitusi $ x $ yang dipilih ke persamaan trigonometrinya. Seperti penyelesaian umum pertidaksamaan, menentukan akar-akar persamaan trigonometri agak lebih sulit dibandingkan dengan bentuk aljabar. Artinya jangan sampai sia-sia penyelesaian kita karena terjadi kesalahan pada garis bilangan dan tandanya. Silahkan baca artikelnya pada link "pertidaksamaan trigonometri". Tetap Semangad !!!^_^!!! Demikian pembahasan materi Cara Menentukan Tanda + atau - pada Garis Bilangan dan contoh-contohnya. Semoga artikel ini bermanfaat untuk kita semua yang lagi mempelajari materi pertidaksamaan.
Apakah Anda mencari gambar tentang Gambar Pertidaksamaan Berikut Pada Garis Bilangan? Terdapat 57 Koleksi Gambar berkaitan dengan Gambar Pertidaksamaan Berikut Pada Garis Bilangan, File yang di unggah terdiri dari berbagai macam ukuran dan cocok digunakan untuk Desktop PC, Tablet, Ipad, Iphone, Android dan Lainnya. Silahkan lihat koleksi gambar lainnya dibawah ini untuk menemukan gambar yang sesuai dengan kebutuhan anda. Lisensi GambarGambar bebas untuk digunakan digunakan secara komersil dan diperlukan atribusi dan retribusi.
Unduh PDF Unduh PDF Anda dapat menggambar pertidaksamaan linear atau pertidaksamaan kuadrat dengan cara yang sama seperti Anda menggambar sebuah persamaan. Perbedaannya adalah bahwa, karena sebuah pertidaksamaan menunjukkan sekumpulan nilai yang lebih besar dari atau kurang dari maka grafik Anda akan menggambarkan lebih dari sekadar titik pada sebuah garis bilangan ataupun sekadar garis pada sebuah bidang koordinat. Dengan menggunakan aljabar dan menilai tanda pertidaksamaan, Anda dapat menentukan manakah nilai-nilai yang termasuk hasil dari sebuah pertidaksamaan. 1 Tentukan variabel. Untuk menyelesaikan pertidaksamaan, pisahkan variabel menggunakan metode aljabar yang sama seperti yang Anda gunakan untuk menyelesaikan sebuah persamaan. [1] Ingatlah bahwa jika Anda mengalikan atau membagi dengan bilangan negatif, Anda perlu membalik tanda pertidaksamaan. 2 Gambarlah sebuah garis bilangan. Masukkan nilai relatif pada garis bilangan nilai yang Anda temukan adalah variabel yang kurang dari, lebih besar dari, atau sama dengan. Buatlah garis bilangan dengan ukuran panjang atau pendek sesuai kebutuhan. Sebagai contoh, jika Anda menemukan bahwa , pastikan untuk menggambarkan sebuah titik untuk 1 pada garis bilangan tersebut. 3 4 Gambarlah panah yang menunjukkan nilai-nilai yang termasuk dalam himpunan penyelesaian. Jika variabel tersebut lebih besar dari nilai relatif, ujung panah harus ke kanan, karena hasilnya mencakup semua nilai yang lebih besar dari bilangan relatif. Jika variabel tersebut kurang dari nilai relatif, ujung panah harus ke kiri, karena hasil tersebut mencakup semua nilai yang kurang dari bilangan relatif. [3] Sebagai contoh, untuk , Anda harus menggambar panah yang mengarah ke kanan, karena hasilnya mencakup semua nilai yang lebih besar dari 1. Iklan 1 2 Gambarlah garis pada sebuah bidang koordinat. Untuk mengerjakannya, ubah pertidaksamaan menjadi persamaan, kemudian buatlah grafik seperti Anda menggambar sebuah garis persamaan lain.[5] Tandai posisi titik potong y, lalu gunakan kemiringan untuk menggambar titik-titik lain pada garis tersebut. 3 4 Iklan 1 2 Gambarlah garis tersebut pada bidang koordinat. Untuk mengerjakannya, ubah pertidaksamaan menjadi persamaan, dan gambarlah garis tersebut seperti yang biasa Anda lakukan. Karena Anda memiliki persamaan kuadrat, garis tersebut akan berbentuk parabola.[9] 3 4 Carilah beberapa titik untuk menguji. Untuk menentukan area mana yang harus diarsir, Anda perlu mengambil beberapa titik dari dalam maupun luar parabola. 5 Arsir area yang tepat. Untuk menentukan area mana yang harus diarsir, masukkan nilai-nilai dari dan dari titik-titik penguji ke dalam pertidaksamaan semula. Titik mana pun yang memberikan pertidaksamaan yang benar menunjukkan area di dalam grafik yang harus diarsir. [11] Iklan Selalu sederhanakan pertidaksamaan lebih dahulu sebelum menggambarnya. Jika Anda benar-benar mengalami kebuntuan, Anda dapat memasukkan pertidaksamaan tersebut ke dalam kalkulator grafik dan berusaha mengerjakannya sebaik mungkin. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
gambar pertidaksamaan berikut pada garis bilangan